

Zorp GPL Tutorial

	Introduction
	What Is Zorp?
	Features

	Brief Explanation
	Protocol analysis

	Proxy firewall

	Modularity

	Community

	Downloads
	Sources

	Binaries

	Support
	Mailing lists

	Documentation

	Evaluate

	License

	What Good Is Zorp?
	Access control

	Information Leak Prevention

	Interoperability

	Content Filtering

	Audit

	Flexibility

	Getting Started
	Basic Concepts
	Zone
	What Zone is good for?
	Administrative Hierarchy

	Inheritable Rights

	How Zone can be configured?

	How Zone works?
	Inheritance

	Conflicts

	Rule
	What Rule is good for?

	How Rule works?
	Who and What?

	Conditions

	Best match

	How Rule can be configured?

	Service
	What service is good for?

	How service works?

	How service can be configured?

	Proxy
	What proxy is good for?

	How proxy works?
	Predefined proxies

	Proxy Inheritance

	General SSL Handling

	Program stacking

	How proxy can be configured?

	Instance
	What instance is good for?

	How instance works?

	How instance can be configured?

	Minimal Configuration
	Zorp Kernel Module
	Rule evaluation

	IPTables relation

	Configuration
	IPTables

	Advanced Routing

	Simple Use Cases
	Protocol Enforcement
	Use case

	Solution

	Result

	Forward Proxy
	Use case

	Solution

	Result

	Reverse Proxy
	Use case

	Solution

	Result

	Access Control
	Use case

	Solution

	Result

	Get Involved
	Troubleshooting
	Kernel debugging
	Dynamic debugging

	Function tracer

	Index

	Module Index

	Search Page

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Introduction

	What Is Zorp?
	Features

	Brief Explanation
	Protocol analysis

	Proxy firewall

	Modularity

	Community

	Downloads
	Sources

	Binaries

	Support
	Mailing lists

	Documentation

	Evaluate

	License

	What Good Is Zorp?
	Access control

	Information Leak Prevention

	Interoperability

	Content Filtering

	Audit

	Flexibility

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

What Is Zorp?

Zorp GPL is a next generation, open source proxy firewall with deep protocol analysis. It allows you to inspect, control, and modify traffic on the application layer of the ISO/OSI model. Decisions can be made based on data extracted from the application-level traffic (for example, HTTP) and applied to a certain traffic type such as users or client machines. It ensures that the traffic complies with the particular protocol standards, and allows you to perform specific actions with the traffic.

Why choose it?

	Free license and active community support

	Network traffic analysis in 7 protocols

	Encrypted channel control

	Content filtering and optional modification

	Modular, highly flexible configuration

	The only answer to many unique problems

	Established project with a 10-year history

Features

	Access control

	Access control in Zorp GPL has a lot more possibilities than average firewalls. It is based on zones instead of hosts or IP ranges and besides “who” and “what”, it can also limit “how”. For example, clients arriving from one zone can only read a given FTP server, whereas others have write privileges.

	Information leakage prevention

	Information leakage prevention helps to keep sensitive information inside your network. For example, HTTP data flow could include internal IP addresses, the URL of a previously visited website (referrer), or browser and operating system information (agent). Zorp GPL is able remove or change this information.

	Content filtering

	Content filtering is done by using external applications, like virus scanners, spam filters and URL checkers. Connections can be accepted, rejected or just simply logged. Suspicious content can be quarantined. Zorp GPL can integrate with all popular antivirus engines, such as NOD32 or AMaVIS.

Supported protocols:

	wildly used procols: HTTP, FTP, SMTP, POP3

	rarely used: Finger, Whois, Telnet

	secure: HTTPS, FTPS, POP3S, SMTPS

	Audit

	Audit of all events is possible, even requests and responses of a protocol, as proxies work at the application level. This can prove not only what happened, but also what did not, for example an old version of a file was deleted, but never uploaded again.

	Interoperability

	Interoperability helps in a world where not all protocol implementation is created equal. Zorp GPL is able to hide protocol features, like compression from HTTP, translate between different encryption standards, and other changes to make clients and servers interoperate more easily.

	Flexibility

	Flexibility is a key feature of Zorp GPL. It is easily extendable by additional modules and customizable to solve specific security problems.

	Linux support

	Zorp GPL administrators can compile and run the product on several Linux-based operating systems. Besides that, pre-compiled binaries are readily available on various Linux distributions, which greatly simplifies its installation on these platforms. Currently binary repositories are available for the following distributions:

	Debian: squeeze, unstable; (i386, amd64)

	Ubuntu: from 10.04 (i386, amd64)

Brief Explanation

Briefly Zorp is an open source proxy firewall with deep protocol analysis. It sounds very sophisticated at first, however, the explanation below will make it easy to understand.

Protocol analysis

Resulting from their functionality firewalls can analyze the network traffic to a certain extent, since without it, it would not be possible for the administrators to control the traffic. This is not different with Zorp. The difference between the firewall applications result from the depth of the analysis. For instance when administrators use Netfilter traffic can only be controlled up until layer 4 (traffic) of the ISO/OSI model. In contrast to that Zorp allows analyzation of even the topmost (application) layer, and can make decisions based on data originating from that layer. Decisions can be applied a certain traffic type, for example full access can be set to an FTP server for a group of users, or only a subset of commands can be granted to implement a read-only access.

Proxy firewall

Almost anything that comes to your mind can be applied on Zorp. First of all the fact that a proxy server makes independent connections with the participants of the network communication and relays messages between them separating the clients and the servers from each other. In this regard Zorp is better than its competitors as the analysis can take place at the application level, either firewall is used as a forward or a reverse proxy. To perform that Zorp implements application level protocol analyzers. These analyzers, called proxy in Zorp terminology, are written in C, extendable and configurable in Python. Nine of twenty five proxies of the commercial version of Zorp are available in the open source edition.

Modularity

One of the key features of the Zorp is customization. It would not be possible without the modular structure of the software. During everyday use it does not require any extra effort to get the benefits of the application level analysis of the network protocols, if we do not have any special requirements. To keep the application level traffic under control we do not have to care about neither the lower layers of the protocol, nor the details of the application level. We only have to concentrate on our goal (for example replacing the value of a specific HTTP header), everything else is done by the proxy. If the proxy to our favourite protocol is not given, Zorp can handle the connection in lower layers and we have the possibility to perform application level analysis manually.

Transport layer security is an independent subsystem in Zorp as far as it possible, so the SSL/TLS parameters can be set independently from the applied application level protocol (for example HTTP, SMTP, ...). Consequently each proxy can work within an SSL connection, including the case when we perform the protocol analysis. Zorp is a proxy firewall, neither more nor less, but can be adapted to tasks other than protocol analysis, such as virus scanning or spam filtering by integrating it with external applications.

Community

Please join our increasing Zorp GPL community by subscribing to one or more of the following forums.

	FaceBook [https://www.facebook.com/pages/Zorp-GPL/239692256091025]

	Google+ [https://plus.google.com/115296005910438881857]

	LinkedIn [http://www.linkedin.com/groups/Zorp-GPL-4166962]

	Twitter [https://twitter.com/ZorpGPL]

Downloads

Sources

	Zorp GPL [http://github.com/balasys/zorp], the firewall itself

	kZorp [http://github.com/balasys/kzorp], kernel module

	libzorpll [http://github.com/balasys/libzorpll], low-level networking library

Binaries

	Zorp GPL packages from Debian [http://packages.debian.org] and Ubuntu [http://packages.ubuntu.com] distribution

	Zorp GPL and related packages for Debian and Ubuntu distribution on MadHouse Project [http://asylum.madhouse-project.org/projects/debian]

Support

Mailing lists

	Subscribe to the lists directly in English [https://groups.google.com/d/forum/zorp] or Hungarian [https://groups.google.com/d/forum/zorp-hu]

	List archives are available at the above URLs

Documentation

	Zorp GPL Tutorial [http://zorp-gpl-tutorial.readthedocs.org] on ReadTheDocs

	Configuration examples [http://github.com/balasys/zorp-examples] on GitHub

Evaluate

There is a set of virtual machines [http://people.balabit.hu/szilard/zorp-gpl/virtual-machines/] to test Zorp GPL.

License

Zorp is not only an open source product, but also a free software as it is licensed under GPL [http://www.gnu.org/licenses/gpl-2.0.html]. The reason of the two licenses is the fact that Zorp is released in two parts and there is also a kernel module.

	Zorp GPL is licensed under GPL 2.0 [http://www.gnu.org/licenses/gpl-2.0.html]

	libzorpll is licensed under GPL 2.0 [http://www.gnu.org/licenses/gpl-2.0.html]

	kZorp is licensed under GPL 2.0 [http://www.gnu.org/licenses/gpl-2.0.html]

It must be noted that the Zorp is dual-licensed [http://en.wikipedia.org/wiki/Multi-licensing] by the main developer BalaSys IT Security [http://www.balasys.hu], where Zorp/Zorp GPL is the open source version and Zorp Professional is the proprietary one with some extra features and proxies.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

What Good Is Zorp?

A marketing specialist would claim that it is “good for everything”. Not being one of them, we would rather say that Zorp is not the philosopher’s stone, however, it can solve almost any issue that can be expected from a deep protocol analyzer proxy firewall. The most important cases are the following:

Access control

Access control is a basic functionality of proxy firewalls, but Zorp has an extra feature compared with other firewall suites. Access to the services can be controlled by the attributes of lower layers of the ISO/OSI model, like IP addresses or ports, but in case of Zorp there is a possibility to define sets of IP subnetworks, called zones. Zones are IP subnetwork groups that administratively belong together (for example all those who are permitted to access FTP servers for upload) and can be linked to a tree hierarchy. Access control rights are inherited between the levels of the Zone tree. A top-level access (for example a right to download from FTP servers) is in effect in the lower levels as long as it is not blocked. In this way an administrative hierarchy can be created that is independent from the network topology and the location of the devices, while reflecting only the network policy.

When an access control policy is being created, we first have to find answers to the “who”, “what” and “how” - questions. Resources should be accessible only for a specific group of users under the defined conditions. It may mean that each request and response must be recorded to the system log when a given server is accessed. Some features of the protocol (for example: STARTTLS in case of SMTP) causing incompatibility between the client and the server may have to be filtered out. Some items of the protocol (for example PUT in case of FTP) may be rejected. Some protocol items (for example user-agent in case of HTTP) may be changed to avoid information leak. Secure connection may be decrypted on one side and encrypted again on the other side. The following sections will describe this in detail.

Information Leak Prevention

Several protocols leak information about the running softwares, the networking options of the clients, which is usually not filtered or not blocked by the firewalls, because they are absolutely compliant with the related standards. An example of this is the user-agent header in the HTTP protocol, which contains the name and the version of the web browser connected to the server. In this case an information about the software being run on the client machine is received by the visited web server without the knowledge or the permission of the user.

The proxy settings of the web browser, the IP address of the machine, the URL of the previously visited web page (referrer of the currently visited one) are leaked in the same way. Similar methods exist in case of several protocols, besides HTTP. System administrators have to be aware of these type of information leaks and have the means to forbid them. Zorp is an easy-to-use and flexible tool for that.

Interoperability

Continuing the example above, not only forbidding of complete protocol items is possible, but also the modification of their values. It can solve the problem of the interoperability for example when a web server constraints the type or the version of the connecting browser despite of the fact that it has no good or valuable reason. Such a situation can be solved easily by changing the value of the user-agent header in the request sent by the browser to a value which is acceptable to the server.

The lack of encryption support may cause interoperability mainly in case of old-fashioned software especially when the traffic should pass through an untrusted network. There are several solutions to this problem, but if we want to proxy the traffic and use different methods of encryption (STARTTLS, SSL) to the client and the server, Zorp is still one of the best solutions. It is possible to establish an encrypted connection through the untrusted network and a plain connection through the trusted one. It is also possible the use different versions of encryption (TLS 1.0, TLS 2.0) to the client and server.

To do that, capability of establishing encrypted connections separately to the client and the server is necessary, but not sufficient. The reason is the way to upgrade a plain text connection to an encrypted (TLS or SSL) one instead of using a separate port for encrypted communication (STARTTLS), where understanding the protocol is a must. If we want to hide this functionality from the client and the server even if both of them support it, to solve an incompatibility problem, Zorp can help us. We can conceal features of the clients or the servers (for example STARTTLS in SMTP, or compression in HTTP) from each other.

To continue the encrypting example, Zorp can hide the STARTTLS feature of the SMTP server from the client, which prevents to initiate encrypted communication in this way. Certain combinations of client and server side SSL settings (for example when SSL is forced in server side) Zorp does it automatically.

Content Filtering

Content filtering is a key feature of firewalls. Zorp is not an exception to this rule, even if without extensions there are only limited opportunities to do that work. However, each of spam filtering, virus scanning, URL filtering is possible by means of external software components. Let the cobbler stick to his last. Zorp does nothing else, but analyzes the protocol to find the particularly interesting parts of the traffic (URL, downloaded data, e-mail attachment, ...) and passes it to the necessary application. As the result of the content filtering and possibly other conditions, Zorp may accept, reject or only log the request, or even quarantine the response. We have nothing to do, but establish connection between the Zorp and the chosen content filtering software (for example: ClamAV, SpamAssassin, ...) with a simple adapter application, which makes the location of the data known to the content filtering tool and forwards the result to Zorp.

Audit

Establishing an access control system is only the first step on the way to achieve a well-controlled and secure network. Operating and administrating this network is more difficult. Above all, we need to know what is happening in our network, because only this information can create the possibility to improve the access control system. On the one hand we have to answer what kind of events have violated the current network policy. On the other hand we are in need of the information whether a permitted action has happened or not and if so, than how. Zorp is able to log the necessary information in both cases.

The benefit of Zorp is the fact that we can retrieve information from the proxies in application level so events of the network can be handled in the application level also. Even requests and responses of a protocol can be recorded to the system log, which can be very useful in case of an audit. After the necessary configuration of the proxy from the log messages it can be proved whether an event has happened or not in a specific time interval and also statistics can be created based on them.

Flexibility

Zorp is able to solve the general uses mentioned above as it is, but the strength of the Zorp lies in the fact that it is easily extendable and customizable to solve specific problems. We do not need to reimplement any kind of functionality, especially the protocol analyzers, we can reuse and extend them to meet our requirements. Nevertheless the proxies are mainly written in C, they can also be scripted in Python with all of the benefits of the language. Existing ones (HTTP, FTP, ...) can be specialized, or a new one can be implemented if we want to analyze the protocol at application level only. It is possible with a special kind of proxy (AnyPy) which does anything, but the application level analysis, so we can focus on that job.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Getting Started

	Basic Concepts
	Zone
	What Zone is good for?
	Administrative Hierarchy

	Inheritable Rights

	How Zone can be configured?

	How Zone works?
	Inheritance

	Conflicts

	Rule
	What Rule is good for?

	How Rule works?
	Who and What?

	Conditions

	Best match

	How Rule can be configured?

	Service
	What service is good for?

	How service works?

	How service can be configured?

	Proxy
	What proxy is good for?

	How proxy works?
	Predefined proxies

	Proxy Inheritance

	General SSL Handling

	Program stacking

	How proxy can be configured?

	Instance
	What instance is good for?

	How instance works?

	How instance can be configured?

	Minimal Configuration
	Zorp Kernel Module
	Rule evaluation

	IPTables relation

	Configuration
	IPTables

	Advanced Routing

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Basic Concepts

Zone

What Zone is good for?

Usually access to the services controlled by the attributes of lower layers of the ISO/OSI model, like IP addresses or ports. Zorp has an extra feature compared with other firewall suites. There is a possibility to define sets of IP subnetworks, called Zone.

Administrative Hierarchy

Zones group IP subnetworks that administratively belong together. What is it good for? In this way an administrative hierarchy can be created that is independent from the network topology, reflecting only the network policy. Imagine the situation when all those who are permitted to access an FTP servers for upload not belongs to the same IP subnet. In this case we would have to add at least two IP based rules to our network policy. If we use Zorp we only have to add necessary IP subnetworks to the necessary zone.

Inheritable Rights

Other notable feature of zones, that they can be linked to a tree hierarchy. Access control rights are inherited between the levels of the zone tree. A top-level access is in effect in the lower levels as long as it is not blocked. For instance a top-level access can be the right to download from FTP servers. When a group of users should have special rights. These special rights can be granted in the lower levels of the zone tree.

How Zone can be configured?

The simplest way to define a Zone to write the followings to the configuration file policy.py. It defines an empty Zone, which has not contain any subnetwork, but can be referred from the firewall rules by its name zone. Obviously it is not so useful, but it is simple as we promised.

Zone('zone')

As it has already mentioned a Zone groups the administratively belonging IP subnetworks together, so we have to define these subnetworks somehow to give meaning to the Zone. It can be done by creating the Zone class with additional addrs parameter, which value must be an iterable object, which contains IP subnetworks in CIDR notation.

Zone(name='intra.devel', addrs=['10.1.0.0/16', 'fec0:1::/24'])
Zone(name='intra.it', addrs=['10.2.0.0/16', 'fec0:2::/24'])

How Zone works?

Inheritance

As it has also mentioned a Zone can refer another Zone as its parent, which makes possible to create a tree from the Zone s. This tree represents the administrative hierarchy of our network. When a Rule refers to a parent Zone in the hierarchy it implicitly refers to the whole subtree. It practically means that we accept a special kind of traffic in a parent Zone it will be accepted all of its child Zone s also.

Zone(name='intra',
 addrs=['10.0.0.0/8', 'fec0::/16'])

Zone(name='intra.devel', admin_parent='intra',
 addrs=['10.1.0.0/16', 'fec0:1::/24'])
Zone(name='intra.it', admin_parent='intra',
 addrs=['10.2.0.0/16', 'fec0:2::/24'])

If the Zone hierarchy above is defined and we create a Rule which accepts for example the HTTP traffic from the Zone intra it also accepts the HTTP traffic from intra.devel and intra.it and any other Zone will be crated in the future which defined as the child of intra independently from the fact that subnetworks of parent and child Zone s contains each other or not.

Conflicts

Identical IP subnetworks – same IP and mask pair – cannot be added to different Zone explicitly (by addrs property of Zone class). It considered invalid configuration and rejected by Zorp.

Rule

What Rule is good for?

There is no firewall without access control and Zorp is no exception to this rule. When an access control policy is being created, we first have to find answers to the “who”, “what” and “how” - questions. Resources should be accessible only for a specific group of users under the defined conditions.

How Rule works?

The Rule answers to the “who”, “what” and indirectly the “how” questions.

Who and What?

The “who” and the “what” questions can be answered by a set of traffic properties. A specific Rule matches to a certain traffic when the parameters what were given to the Rule match to the traffic.

Rule(service='service_dns',
 dst_port=53)

In the example above the Rule matches to any kind of traffic which target the port destination 53. In other words it grants access to any name server on the internet. It works only when protocol is TCP or UDP, because port is not defined in case of other protocols (for example IGRP), but we can add another conditions to the Rule to make the rule definite.

Rule(service='service_dns',
 proto=(socket.IPPROTO_TCP, socket.IPPROTO_UDP),
 dst_subnet='8.8.8.8/32',
 dst_port=53)

As it can be seen multiple conditions can be defined, so the “who” and the “what” can be answered at the same time. The questions are what kind of conditions can be set, what is the relation between the different type of conditions, what is the relation between the items of a certain condition.

Conditions

First of all list the possible conditions parameters of a Rule. As you can see there are 8 different type of conditions, which can be set independently from each other. If more than one condition is given the rule matches only if the logical conjunction of the conditions matches. If there is more than one value in a specific condition there is logical disjunction between them.

	VPN id (reqid)

	source interface (iface or src_iface)

	protocol (proto)

	protocol type (proto_type)

	protocol subtype (proto_subtype or icmp_type)

	source port (src_port or icmp_code)

	destination port (dst_port)

	source subnetwork (src_subnet and src_subnet6)

	source zone (src_zone)

	destination subnetwork (dst_subnet and dst_subnet6)

	destination interface (dst_iface)

	destination zone (dst_zone)

In the complex rule example above the Rule matches when the protocol of the traffic is TCP or UDP and the destination address is 8.8.8.8 and the destination port is 53. In general we can say if we want a more restrictive Rule we have to add a new condition, if want a more permissive rule we have to add a new value to an existing condition.

Best match

In contrast to the Netfilter where the first matching rule takes effect, in case of Zorp the best matching rule takes effect. It entails that the order of the rules is irrelevant. When a new connection is occurred the evaluation will check each rule against the parameters of the traffic to find the best one.

The word best in the expression best match means that the more accurate rule will take affect. The accuracy of a Rule depends on two thing, the evaluation order of the conditions and the accuracy of the specific condition in the Rule.

	Evaluation order

	There is a precedence between the different condition types, which determines the order of the evaluation. It means if a rule has a condition with higher precedence it considers better that the other one. The condition list enumerates over the conditions in top to bottom in descending precedence. It practically means that a rule with a destination subnetwork condition is always better than a rule with destination zone condition and both of them are worse than a rule with a source zone condition and so on ...

	Condition scope

	If two rule are considered to be identical – in other words they have conditions with the same precedence – the value of the conditions determines which one considered to be better. In general a narrower is always better than a wide scope, which means an IP subnetwork with greater prefix value, a port number instead of a port range, a child zone instead of a parent is more specific, so the rule with it is considered better.

How Rule can be configured?

Lets imagine the situation when we want to grant access to any kind of FTP server on the internet in read-only mode for everyone in our local network (10.0.0.0/8), but we have to grant read-write access to a specific server (1.2.3.4) and for a certain department (10.10.0.0/16) of our organization. How can we use the best match to fulfill the requirements?

First of all solve the general requirement, which is the read-only access to any FTP server for everyone from our subnet. It can be done by a rule which contains two explicit and an implicit condition and an action. The explicit conditions are about the destination port, namely 21, the standard FTP port, and the source subnetwork, namely 10.0.0.0/8 which is our private network in the example. The implicit condition is about the destination subnetwork that does not appear in the rule, which means it matches independently from the destination of the traffic. The action can be set by the service parameter of the rule which is service_ftp_read_only in this case.

Rule(service='service_ftp_read_only',
 dst_port=21)

Rule(service='service_ftp_read_write',
 dst_subnet='1.2.3.4/32',
 dst_port=21)

Rule(service='service_ftp_read_write',
 src_subnet='10.10.0.0/16',
 dst_port=21)

The second requirement was to grant read-write access to a specific server (1.2.3.4). It can be done by a rule matches “better” to the traffic than the previous one. As the second rule has a condition to the destination subnetwork (dst_subnet), while the first one has not, it considered to more specific, so it is a “better” match.

The third requirement was to grant read-write access for a department (10.10.0.0/16) of our organization to any FTP server. It is also possible by adding a new rule with a condition to the source subnetwork (src_subnet) with the necessary value (10.10.0.0/16).

The question arises, what is the best match to a traffic which comes from the subnetwork 10.10.0.0/16 and its destination is the address 1.2.3.4, as in this case each rule matches. As we have already mentioned the second and the third one more specific than the first, so the first one cannot be the bast match. Inasmuch source subnetwork condition has higher precedence than the destination subnetwork the second rule will be the best match.

Service

What service is good for?

The service answers the earlier mentioned “how” question, as it determines what exactly happens with the traffic, whether it is analyzed in the application layer of the ISO/OSI model or not, rejected or accepted. After the best matching rule has found, an instance of a service set in the rule starts to handle the new connection.

How service works?

There are three different service types in Zorp with completely different functionality and configuration.

	PFService

	Transfers packet-filter level services, so if you want to transfer connections on the packet-filter level only, and you do not want analyze application-level traffic making decisions based on it, use PFService. It provides better performance, as the decision about the traffic can be made in kernel space by KZorp, without the assistance of the user space firewall (Zorp) itself.

	Service

	Transfers application-level (proxy) services, so if you want to transfer connections on the application-level to make possible audit, analysis, restriction or modification, use Service. It does not provide as good performance as PFService, since the decision about the traffic cannot be made in kernel space (KZorp), it also requires the assistance of the Zorp, that runs in the user space, which makes deeper and also more resource-consuming operations.

	DenyService

	
New in version 3.9.8: The DenyService class.

Rejects the connections in a predefined way. In general, it can be used to handle the exceptions in your policy. If you have a general rule that grants access to any FTP servers from any subnetwork, but you want to make an exception (for example there is a prohibited server), you can create a more specific rule (with the server address in dst_subnet condition) that rejects the traffic as it is set in the DenyService.

How service can be configured?

Minimal configuration of a service depends on its type, but at least it must contain a name. The name parameter is used to refer to the service from another object (for example from a rule).

	PFService

	With the defaults of the additional parameters, PFService transfers the traffic through the firewall in the packet-filter level without passing it to the user space (just like in Netfilter).

PFService(name='PFService')

	Service

	In case of Service, the proxy_class parameter is also mandatory. This is the most important parameter in the point of view of a proxy firewall, while its value determines what will happen with the traffic in the application layer.

Service(name='Service', proxy_class=HttpProxy)

	DenyService

	
New in version 3.9.8: The DenyService class.

With the defaults of the additional parameters, DenyService drops the traffic silently (just like DROP target in Netfilter).

DenyService(name='DenyService')

Proxy

As it has already been mentioned earlier the network traffic analysis can take place at the application level. To perform that, Zorp implements application level protocol analyzers. These analyzers are called proxies in the terminology of Zorp. Proxies are written in C, and they are extendable and configurable in Python.

What proxy is good for?

Any kind of application level protocol analysis, restriction, modification can be done by proxy.

How proxy works?

Predefined proxies

Zorp contains several proxies which can be used without any improvement or modification to work on the application level traffic.

	HTTP, FTP, SMTP

	Proxies to analyze widely used protocols

	Finger, Telnet, Whois

	Proxies to analyze rarely used protocols.

	Plug

	As its name shows it does nothing else, but to plug the client and server connection. It has all the benefits that other proxies have, except the protocol analysis.

	AnyPy

	It is a simple proxy like the Plug proxy with a Python interface. It makes it possible to do anything with the application level network traffic which can be done by the help of the Python language, while the lower layers of the connection is handled by Zorp. For instance if the proxy to our favorite protocol is not implemented yet in Zorp we have the possibility to perform application level analysis manually.

Proxy Inheritance

As it is mentioned each proxy is configurabe and extendable in Python. It means each proxy represented as a class in Python and the system administrator can inherit his own Python class from that to override the behavior of the parent class. A derived class inherits everything from the base class, which is necessary for the protocol analysis, so the system administrator has to care about his specific problem. For instance to change a value of a header in the HTTP protocol needs only an extra line of code over the lines related to the Python inheritance mechanism.

General SSL Handling

General SSL handling follows from the fact, that transport layer security is an independent subsystem in Zorp. It means, that SSL/TLS parameters can be set independently from the fact, that we perform protocol analysis or not. Consequently not only HTTP, FTP, SMTP and POP3 proxies are SSL capable, but also the Plug and the AnyPy proxies. Server and client side SSL parameters can also be set independently. So it is possible to encrypt on the client side, but not on the server side and vice versa. Of course both of the sides can be encrypted.

Program stacking

Zorp is a proxy firewall, neither more nor less, but can be used to do tasks other than protocol analysis, such as virus scanning or spam filtering by integrating it with external applications. For instance in case of the HTTP protocol Zorp can forward responses to a virus scanner software. After that depending on the result of the scan Zorp can accept or reject the original request.

How proxy can be configured?

Zorp proxy classes can be implemented or customized in Python language. As the following example show the only thing we have to do is deriving a new class from the necessary base class (HttpProxy) and customizing its behaviour.

from Zorp.Http import *

class HttpProxyHeaderReplace(HttpProxy):
 def config(self):
 HttpProxy.config(self)
 self.request_header["User-Agent"] = (HTTP_HDR_CHANGE_VALUE,
 "Forged Browser 1.0")

The example above only a demonstration of a customization, it is uncommented now, we will back to later.

Instance

An instance groups the rules and services belonging in some way together and separates the resulting groups from each other.

What instance is good for?

It makes possible the independent

	modification of the elements of (for example: rules, services)

	parameters passing to (for example: log level, thread limit)

	control (for example start, stop, reload) of

	monitor (for example memory usage, thread number) of

	get statistics (for example connection information, thread rate) from

each instances.

How instance works?

An instance is represented as a process at the level of the operating system. In order of the list above an instance

	represented as a function in configuration (see also)

	can have separate configuration file

	runs as a separate process, so
	can be controlled separately (see also)

	can be monitored separately (see also)

	can have separate statistical informations (see also)

New in version 3.9.2: The num-of-processes parameter.

An instance can be run as several processes which can provide better performance on multi-core processors.

How instance can be configured?

Arguments of the process can be set in the instances.conf where each line represents an instance. The line begins with the name of the instance followed by the command line arguments of the Zorp process and after two dashes (--) the argument
of the Zorp controller application named zorpctl.

default_instance --verbose 3 --policy /etc/zorp/policy.py -- --num-of-processes 1

Zorp instance represented as a function in the configuration file policy.py. Any object related to the instance declared inside this function.

from Zorp.Http import *

def instance():
 Service(name='service', proxy_class=HttpProxy)
 Rule(dst_port=80, service='service')

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Minimal Configuration

Zorp Kernel Module

KZorp is the kernel module of the Zorp application level firewall. The module makes possible to make kernel space decisions about the traffic according to the configured Zorp policy. It also provides some extensions to IPTables so that you can build your own packet filter ruleset that uses Zorp concepts and policy objects.

Rule evaluation

Zorp communicates the policy to KZorp when starting up, so inital policy decisions can be applied to certain traffic in kernel space. As the result of the decision, packets are either dropped or put back to the chain of IPTables where the KZORP target has been called.

IPTables relation

The KZorp kernel and IPTables modules allow using certain Zorp concepts in packet filter rulesets.

It adds support for the following IPTables modules:

	zone match: you can match on Zorp zones (defined in the Zorp policy) in your IPTables ruleset.

	service match: matches on either the name or the type of the service that has been selected for the packet based on your Zorp policy.

	KZORP target: handles DAC checks, transparent proxy redirections and generic processing of packets for PFService services (that is, Zorp services that process packets on the packet filter level, not in a user-space proxy).

Configuration

The main problem of transparent proxy firewalls is the fact that the traffic does not target the firewall itself, but a host behind the network security device. In a usual case the traffic is forwarded to the originally targeted server, but in case of a firewall the traffic must be delivered locally to the proxy, which will connect to the originally targeted server, or another according to the policy. The divertable packets should be identified somehow in the packet filter rulesets. It can be performed by the means of transparent proxy (TProxy [https://www.kernel.org/doc/Documentation/networking/tproxy.txt]) kernel module of the kernel.

The idea is to identify packets with the destination address matching a local socket on your box, set the packet mark to a certain value, and then match on that value using policy routing to have those packets delivered locally.

 Simple Use Cases

Simple Use Cases

	Protocol Enforcement
	Use case

	Solution

	Result

	Forward Proxy
	Use case

	Solution

	Result

	Reverse Proxy
	Use case

	Solution

	Result

	Access Control
	Use case

	Solution

	Result

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Protocol Enforcement

Protocol Enforcement

Use case

The most common use case of a proxy firewall – including Zorp – nowadays is to rule the Internet, means take control over the HTTP traffic. This is a simple, but good example to show the advantage of a proxy firewall technology. When the system administrator has to grant access to the World Wide Web, usually only one rule is created, which opens port 80 to the Internet. It solves the original problem, but generates another one. With the help of this rule anybody can access any kind of service of any server on the port 80 independently from the fact, that it is a web service or not.

Solution

The application level solution of the problem is enforcing the HTTP protocol on the traffic on the destination port 80. It is easy with Zorp, because there is a predefined proxy (HttpProxy) to enforce the HTTP protocol. We only have to start a service which sets this proxy as proxy_class parameter, when the traffic meets the mentioned requirements.

from Zorp.Http import * #1

def default_instance():
 Service(name='service_http_transparent', #2
 proxy_class=HttpProxy
)
 Rule(service='service_http_transparent', dst_port=80, #3
 src_zone=('clients',),
 dst_zone=('servers',)
)

	Imports anything from the texttt{Zorp.Http} module, which makes it possible to use HttpProxy-related names without any prefix.

	Creates a simple service with the name service_http_transparent, which uses the predefined HttpProxy of Zorp.

	Creates a rule with the necessary conditions, traffic from zone clients to Zone servers targets the port 80 and starts a service named service_http_transparent.

Result

The result is as simple as possible. The traffic goes through a transparent service without the client or the server being aware of that, while the HTTP protocol is enforced by the HttpProxy of Zorp.

 Forward Proxy

Forward Proxy

Use case

We intend to use the firewall as a proxy server, like a Squid web cache.

Solution

The solution is very simple, since there is a proxy class that we can use to control the traffic on the proxy level. In this case, the clients connect to Zorp that acts as a proxy server, and allows traffic flow according to the rules, but communicates with the clients “in the proxy language”.

from Zorp.Http import *

def default_instance():
 Service(name="service_http_nontransparent_inband", # <2>
 proxy_class=HttpProxyNonTransparent, # <3>
 router=InbandRouter(forge_port=TRUE, forge_addr=TRUE) # <4>
)
 Rule(service='service_http_nontransparent_inband', # <1>
 dst_port=3128,
 dst_subnet=('172.16.10.254',),
 src_zone=('clients',)
)

	Creates a rule which matches only, when the traffic comes from the clients zone and targets the IP address 172.16.10.254 and the port 3128, which address is the address of the client side interface of the firewall.

	Creates a service that works like a proxy server.

	It uses the predefined HttpProxyNonTransparent, because this proxy class – against the HttpProxy in the code sniplet tarnsparent proxy use case – handles the traffic as a proxy server.

	In this case the address of the HTTP server, that the client wants to connect to, comes from the application layer traffic and not from the network layer, so the default DirectedRouter. It routes the traffic where it was originally considered to be routed, but in this case (non-transparent service) the client targets the proxy server (here, the firewall) itself. Setting InbandRouter as router can handle the situation for both the HTTP and FTP protocol.

Result

Now the IP address 172.16.10.254 and port 3128 can be set as HTTP proxy in the internet browsers.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Reverse Proxy

Reverse Proxy

Use case

A common requirement is the following case: Client connects to a proxy server, that appears to the client as an ordinary server, but it forwards the request to the origin server, which handles it. Thus, we communicate with the origin server through a proxy server. For example we reach a mail server in DMZ, we connect to a firewall, but in reality, we communicate with the SMTP server in the DMZ.

Solution

The communication can be inspected on the protocol level, since the SMTP proxy is available in Zorp. Based on the abovementioned example, we connect to the firewall, and indirectly communicate with another server through the firewall.

from Zorp.Smtp import *

def default_instance():
 Service(name="service_smtp_transparent_directed", # <3>
 proxy_class=SmtpProxy,
 router=DirectedRouter(dest_addr=SockAddrInet('172.16.20.254', 25)) # <2>
)
 Rule(service='service_smtp_transparent_directed', # <1>
 dst_port=25,
 src_zone=('dmz',),
 dst_subnet=('172.16.40.1',)
)

	This case is similar than it was at the HTTP forward proxy code sniplet, the clients connect to the firewall directly, so the destination IP address is the firewall’s address (172.16.40.1) and the port is the standard port of SMTP (25).

	The service uses the predefined SmtpProxy proxyclass to enforce the SMTP protocol.

	As the clients target the firewall, the traffic must be routed to the origin server (172.16.20.254) directly. As its name shows, this function can be solved by the DirectedRouter class, where the dest_addr parameter contains the address and the port value of the origin server.

There is another relevant question in case of a forward proxy. As the firewall connects to the origin server, in the log of the SMTP server on the origin server it would always show the IP address of the firewall, if we did not extend the router with following parameter:

router=DirectedRouter(dest_addr=SockAddrInet('172.16.20.254', 25),
 forge_addr=TRUE
)

The forge_addr and forg_port options of the router can be used to forge the client address and port to the traffic instead of the firewall’s ones.

Result

The client connection is forwarded to the origin server by the firewall to handle it. Replies are forwarded back to the client in a transparent way (at the application level). The client is not aware of the forwarding, so additional settings are not required – like proxy in the forward proxy use case – on the client side.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Access Control

Access Control

Use case

It is a general use case that we want to grant access for a user to an FTP server on the Internet to allow downloading anything, but at the same time we want to prevent them from uploadin anything.

Solution

The application level solution of the problem is to accept the read-only commands of the FTP protocol, but drop the commands used to write to the server (for example: PUT). As it is a general issue, Zorp provides a predefined proxy to perform that, so the system administrator does not have to do anything to implement a read-only FTP access, only use that proxy.

from Zorp.Ftp import *

Service(name="service_ftp_transparent", # <1>
 proxy_class=FtpProxyRO
)

Rule(service='service_ftp_transparent', # <2>
 dst_port=21,
 src_zone=('clients',),
 dst_zone=('servers',)
)

	Creates a rule that matches the FTP traffic, as the destination port in the rule is the standard port of the FTP servers (21).

	The service uses the predefined FtpProxyRO, which analyzes the traffic and when we issue a read-only command, it will be sent successfully to the server. When we issue a write command an error message will be sent to the client, but nothing will be sent to the server, as Zorp rejects them.

Result

Any kind of read-only operation works successfully, but error message is displayed on the client side when it tries to perform a write operation on the server.

 Get Involved

Get Involved

	Troubleshooting
	Kernel debugging
	Dynamic debugging

	Function tracer

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Troubleshooting

Troubleshooting

	Kernel debugging
	Dynamic debugging

	Function tracer

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Kernel debugging

Kernel debugging

Dynamic debugging

If the dynamic debugging is enabled in your kernel configuration, KZorp debug messages can be enabled and disabled dynamically. Before enabling any debug messages or leaving them enabled, consider the fact that logging these messages may cause serious performance issues especially in case of heavy traffic.

echo 'file kzorp_netlink.c +p' > /sys/kernel/debug/dynamic_debug/control # <1>
echo 'module kzorp +p' > /sys/kernel/debug/dynamic_debug/control # <2>

	Enables debug messages in source file kzorp_netlink.c

	Enables debug messages kzorp module

Debug messages can be disabled with the same command, using the -p switch after the name of the source file or module instead of +p. For details, read the dynamic debug howto [https://www.kernel.org/doc/Documentation/dynamic-debug-howto.txt].

Function tracer

If the dynamic debugging support is not enabled in our kernel, there is another possibility to trace KZrop, the kernel part of Zorp. Functions are traced whether there are debug messages in them or not. KZorp related functions have a kz_ prefix in their names, so tracing them can be enabled with the following commands:

sysctl kernel.ftrace_enabled=1 # <1>

cd /sys/kernel/debug/tracing
echo function_graph > current_tracer # <2>
echo 'kz_*' > set_ftrace_filter # <3>

echo 0 > tracing_on # <4>
sleep 1
echo 1 > tracing_on # <5>

	Checks that ftrace_enabled is set in the kernel configuration, otherwise this tracer is a nop.

	Sets the tracer that provides the ability to draw a graph of function calls similar to C code.

	Limits tracing to functions with names starting with the kz_ prefix.

	Starts the tracing.

	Stops the tracing.

The result of the trace can be read in the trace file. For details, read the function traces documentation [https://www.kernel.org/doc/Documentation/trace/ftrace.txt].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | V
 | Z

A

 	
 	access control, [1]

 	
 	audit

B

 	
 	best match

C

 	
 	content filtering

 	URL filtering

 	spam filtering

 	virus scanning

D

 	
 	DMZ

E

 	
 	
 encryption

 	SSL, [1]

 	TLS, [1]

F

 	
 	forward proxy

I

 	
 	integration

 	
 	IP, [1]

L

 	
 	
 licence

 	GPL, [1]

 	dual-licensin

 	
 	logging

N

 	
 	Netfilter, [1]

O

 	
 	OSI model, [1], [2]

P

 	
 	program stacking

 	
 programming language

 	C, [1]

 	Python, [1]

 	
 protocol

 	FTP, [1], [2], [3]

 	HTTP, [1], [2]

 	HTTP;user-agent, [1]

 	SMTP, [1], [2]

 	
 	
 proxy

 	AnyPy, [1]

 	Plug

 	forward proxy, [1]

 	reverse proxy

R

 	
 	reverse proxy

S

 	
 	spam filtering

 	
 	Squid

 	subnetwork, [1]

V

 	
 	virus scanning

Z

 	
 	Zone, [1]

 	
 Zorp

 	Zorp GPL

 	Zorp Professional

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Zorp GPL Tutorial

 		Introduction

 		What Is Zorp?

 		Features

 		Brief Explanation

 		Community

 		Downloads

 		Support

 		License

 		What Good Is Zorp?

 		Access control

 		Information Leak Prevention

 		Interoperability

 		Content Filtering

 		Audit

 		Flexibility

 		Getting Started

 		Basic Concepts

 		Zone

 		Rule

 		Service

 		Proxy

 		Instance

 		Minimal Configuration

 		Zorp Kernel Module

 		Configuration

 		Simple Use Cases

